The DOE ACTS Collection

How can it be used?

UC Berkeley - CS267 - April 13, 2005

Tony Drummond

Lawrence Berkeley National Laboratory acts-support@nersc.gov ladrummond@lbl.gov

Motivation- Why do we need software libraries?

Large Scientific Codes: A Common Programming Practice

Motivation- Why do we need software libraries?

New Architecture:

 May or may not need rerewriting

New Developments:

Difficult to compare

Algorithmic Implementations Application Control I/O Data Layout

Tuned and machine Dependent modules

New Architecture:

- Extensive re-rewritingNew or extended Physics:
- Extensive re-rewriting or increase overhead

New Architecture:

Minimal to Extensive rewriting

New Architecture or S/W

- Extensive tuning
- · May require new programming paradigms
- · Difficult to maintain!

Motivation- Why do we need software libraries?

An Alternative Approach

Shortcomings?

"We need to move away from a coding style suited for serial machines, where every macrostep of an algorithm needs to be thought about and explicitly coded, to a higher-level style, where the compiler and library tools take care of the details. And the remarkable thing is, if we adopt this higher-level approach right now, even on today's machines, we will see immediate benefits in our productivity."

W. H. Press and S. A. Teukolsky, 1997

Numerical Recipes: Does This Paradigm Have a future?

ACTS Tools

Category	Tool	Functionalities	
	AztecOO	Algorithms for the iterative solution of large sparse linear systems.	
Numerical	Hypre	Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic configuration of parameters.	
	PETSc	Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.	
$Ax = b$ $Az = \lambda z$	OPT++	Object-oriented nonlinear optimization package.	
$A = U\Sigma V^{T}$	SUNDIALS	Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-algebraic equations.	
PDEs ODEs	ScaLAPACK	Library of high performance dense linear algebra routines for distributed-memory message-passing.	
OBLS	SuperLU	General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.	
TAO		Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained optimization, and general nonlinear optimization.	
Code Development	Global Arrays	Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-memory view of distributed arrays.	
Development	Overture	Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.	
	CUMULVS	Framework that enables programmers to incorporate fault-tolerance, interactive visualization and computational steering into existing parallel programs	
Code Execution	Globus	Services for the creation of computational Grids and tools with which applications can be developed to access the Grid.	
	TAU	Set of tools for analyzing the performance of C, C++, Fortran and Java programs.	
Library Development	ATLAS	Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.	

Software Selection

```
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

CALL PDGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, $ INFO )
```

Language Calls

Command lines

- -ksp_type [cg,gmres,bcgs,tfqmr,...]
- -pc_type [lu,ilu,jacobi,sor,asm,...]

More advanced:

- -ksp_max_it <max_iters>
- -ksp gmres restart <restart>
- -pc_asm_overlap <overlap>
 - -pc_asm_type [basic,restrict,interpolate,none]

Problem Domain

Computational	Methodology	Algorithms	Library
Problem			
Linear Equations	Direct	LU factorization	ScaLAPACK
Problems			(dense)
			SuperLU (sparse)
		Cholesky factor-	ScaLAPACK
		ization	
		LDL^{T} factoriza-	ScaLAPACK
		tion (tridiagonal	
		matrices)	
		QR factorization	ScaLAPACK
		QR with Col-	ScaLAPACK
		umn Pivoting	
		factorization	
		LQ factorization	ScaLAPACK
		Complete Orthog-	ScaLAPACK
		onal factorization	
		Generalized QR	ScaLAPACK
		factorization	
			• General QR,
			LQ,QL, RQ and RZ
			and nz

Computational	Methodology	Algorithms	Library
Problem			
Linear Equations	Iterative	Conjugate Gradi-	AztecOO (Trilinos)
Problems		ent (CG)	
			PETSc
		GMRES	AztecOO
			Hypre
			PETSc
		CGS (CG	AztecOO
		Squared)	
			PETSc
		Bi-CG-Stab	AztecOO
			PETSc
		Quasi-Minimal Residual (QMR)	AztecOO
		7 70	1 . 00
		Transpose Free	AztecOO
		QMR	Totalana
		CITE DATE OF A	PETSc PETSc
		SYMMLQ (sym- metric LQ)	PEISC
		Preconditioned	AztecOO
		CG	Azicooo
			Hypre
			PETSc
		Richardson	PETSc
		Block Jacobi pre-	AztecOO
		conditioner	
			Hypre
			PETSc
		Point Jacobi pre- conditioner	AztecOO
		Least-squares	AztecOO
		polynomials	an annual of the public public
		SOR precondi-	PETSc
		tioner	

Computational	Methodology	Algorithms	Library
Problem			
Linear Equations	iterative	Overlapping Addi-	PETSc
Problems	(cont.)	tive Schwarz (ASM)	
		preconditioner	
		Approximate In-	Hypre
		Verse	
		Sparse LU precon-	AztecOO
		ditioner	
			Hypre
			PETSc
		Incomplete LU	AztecOO
		(ILU) precondi-	
		tioner	
			Hypre
			PETSc
	Multigrid	MG preconditioner	Hypre
	(MG)		
			PETSc
		Algebraic Multigrid	ML (Trilinos)
			Hypre
		Semicoarsening	Hypre

Structure of PETSc

PETSc Numerical Components

Nonlinear Solvers					
Newton-bas	Newton-based Methods Other				
Line Search	Other				

Time Steppers				
Euler	Backward Euler	Pseudo Time Stepping	Other	

		Kry	lov Subsp	oace Me	thods		
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other

		Pre	econditi	oners		
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others

Matrices						
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other	

Distributed Arrays

Index Sets

Indices Block Indices Stride Other

Vectors

PETSc Krylov Subspace Methods

Partial list of Linear Solvers in PETSc

Krylov Methods (KSP)

- Conjugate Gradient
- GMRES
- CG-Squared
- Bi-CG-stab
- Transpose-free QMR
- etc.

Preconditioners (PC)

- Block Jacobi
- Overlapping Additive Schwarz
- ICC, ILU via BlockSolve95
- ILU(k), LU (sequential only)
- etc.

PETSc Example - Basic Linear Solver in C

```
Original Matrix from
SLES sles;
               /* linear solver context */
                                                  Linear System
Preconditioning matrix
      A;
              /* matrix */
Mat
             /* solution, RHS vectors */
Vec
     x, b;
            /* problem dimension, number of iterations */
int
      n, its;
MatCreate(MPI_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,
          n,n,&A):
                                         /* assemble matrix */
VecCreate(MPI COMM WORLD, PETSC DECIDE, n, &x);
                                   /* assemble RHS vector */
VecDuplicate(x,&b);
SLESCreate(MPI_COMM_WORLD,&sles);
SLESSetOperators(sles Ala, DIFFERENT NONZERO PATTERN);
SLESSetFromOptions(sles);
SLESSolve(sles,b,x,&its);
                           SAME NON_ZERO_PATTERN
SLESDestroy(sles);
                           SAME PRECONDITIONER
```


Hypre Conceptual Interfaces

Hypre Conceptual Interfaces

- . Structured-Grid Interface (Struct)

 _applications with logically rectangular grids
- . Semi-Structured-Grid Interface (SStruct)

 _applications with grids that are mostly—but not
 entirely—structured (e.g., block-structured, structured
 AMR, overset)
- . Finite Element Interface (FEI)

 _unstructured-grid, finite element applications
- . Linear-Algebraic Interface (IJ)

 _applications with sparse linear systems

Hypre Conceptual Interfaces

- Before writing your code:
 - choose a conceptual interface
 - choose a solver / preconditioner
 - choose a matrix type that is compatible with your solver / preconditioner and conceptual interface
- Code Development
 - build auxiliary structures (e.g., grids, stencils)
 - build matrix/vector through conceptual interface
 - build solver/preconditioner
 - solve the system
 - get desired information from the solver

Hypre's IJ interface: setting up the Solver

List of Solvers and Preconditioners per Conceptual Interface

	System Interfaces				
Solvers	Struct	SStruct	FEI	IJ	
Jacobi	X				
SMG	X				
PFMG	X				
BoomerAMG	X	X	X	X	
ParaSails	X	X	X	X	
PILUT	X	X	X	X	
Euclid	X	X	X	X	
PCG	X	X	X	X	
GMRES	X	X	X	X	

Computational	Methodology	Algorithms	Library
Problem			
Linear Least	Least	$minimize_x b$ -	ScaLAPACK
Squares Prob-	squares	$Ax _2$	
lems	solution		
	Minimum	$minimize_x x _2$	ScaLAPACK
	norm solu-	- 11 112	
	tion		
	Minimum	$minimize_x x _2$	ScaLAPACK
	norm least	and $ b - Ax _2$	
	squares		
Standard Eigen-	Symmetric	$Az = \lambda z \text{ for } A =$	ScaLAPACK
value Problem	Eigenvalue	A^T or $A = A^H$	(dense)
vande 1 robiem	Problems		(delice)
	1 TOOLCHIS		SLEPc (sparse)
Singular Value	Singular	$A = U\Sigma V^T$	ScaLAPACK(dense
Problems value	Value De-	$A = U\Sigma V^H$ $A = U\Sigma V^H$	SCALAT ACIN dense
Troblems	composition	A - 0 24	
	composition		CI CDo (anonco)
Generalized	T2: 1.1	A	SLEPc (sparse) ScaLAPACK
	Eigenproblem	$Az = \lambda Bz$,	
Symmetric Def-		$ABz = \lambda z$,	(dense)
inite Eigenprob-		$BAz = \lambda z$	
lem			GLED. ()
			SLEPc (sparse)
Non-linear Equa-	Newton-	Line Search	PETSc
tions Problems	based		
		Trust Regions	PETSc
		Pseudo-transient	PETSc
		continuation	
		Matrix free	PETSc
Non-linear Opti-	Newton-	Newton	OPT++
mization Prob-	based		
lems			
			TAO
		Finite Difference	OPT++
		Newton	
		Quasi Newton	OPT++
			TAO (LMVM)
		Nonlinear Interior	OPT++
		Point	
			TAO

PETSc Nonlinear Solver (SNES)

Time Dependent PDE Solution

Computational	Methodology	Algorithms	Library
Problem			
Non-linear	CG	Standard nonlin-	OPT++
Optimiza-		ear CG	
tion Problems			
(cont.)			
			TAO
		Limited memory	OPT++ (uncon-
		BFGS	strained)
		Gradient Projec-	TAO
		tion	
	Direct	Without deriva-	OPT++
	Search	tive Information	
	Semismooth	Infeasible semis-	TAO
		mooth	
		Feasible semis-	TAO
		mooth	
Ordinary differ-	Integration	Variable coeffi-	CVODE (SUNDI-
ential equations		cient forms of the	ALS)
		Adams-Moulton	
	Backward	Direct and itera-	CVODE (SUNDI-
	differential	tive solvers	ALS)
	formula		
Nonlinear Alge-	Inexact New-	Line search	KINSOL (SUNDI-
braic Equations	ton		ALS)
Differential-	Backward	Direct and itera-	IDA (SUNDIALS)
Algebraic	differential	tive solvers	
Equations	formula		

Classes of Problems in OPT++

- Four major classes of problems available
 - NLF0(ndim, fcn, init_fcn, constraint)
 - Basic nonlinear function, no derivative information available
 - NLF1(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first derivative information available
 - FDNLF1(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first derivative information approximated
 - NLF2(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first and second derivative information available

Classes of Solvers in OPT++

- Direct search
 - No derivative information required
- Conjugate Gradient
 - Derivative information may be available but doesn't use quadratic information
- Newton-type methods
 - Algorithm attempts to use/approximate quadratic information
 - Newton
 - Finite-Difference Newton
 - Quasi-Newton
 - NIPS

TAO - Interface with PETSc

TAO - Bound Constraint Optimization

- Conjugate Gradient
- Limited-Memory variable-metric algorithms
- Newton Algorithms where user supplies

The user must provide:

- The Function and its First Derivative
- For Newton Methods the second Derivative is also required (Hessian Matrix)

TAO - CG Algorithms

$$x_{k+1} = x_k + \alpha_k p_k$$
$$p_{k+1} = -\nabla f(x_k) + \beta_k p_k$$

where α_k is determined by a line search.

Three choices of β_k are possible $(g_k = \nabla f(x_k))$:

$$\beta_k^{FR} = \left(\frac{\|g_{k+1}\|}{\|g_k\|}\right)^2, \quad \text{Fletcher-Reeves}$$

$$\beta_k^{PR} = \frac{\langle g_{k+1}, g_{k+1} - g_k \rangle}{\|g_k\|^2}, \quad \text{Polak-Rivière}$$

$$\beta_k^{PR+} = \max\left\{\beta_k^{PR}, 0\right\}, \quad \text{PR-plus}$$

TAO - Limited-Memory Variable

$$x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k)$$

where α_k is determined by a line search.

The matrix H_k is defined in terms of information gathered during the previous m iterations.

- H_k is positive definite.
- \diamond Storage of H_k requires 2mn locations.
- Computation of $H_k \nabla f(x_k)$ costs (8m+1)n flops.

TAO - Trust Region Newton Algorithms

At each iteration the step s_k (approximately) minimizes

$$\min \{ q_k(x_k + s) : s_i = 0, \ i \in \mathcal{A}_k, \ x_l \le x_k + s \le x_u, \ ||s|| \le \Delta_k \}$$

where q_k is the quadratic approximation,

$$q_k(w) = \langle \nabla f(x_k), w \rangle + \frac{1}{2} \langle w, \nabla^2 f(x_k) w \rangle,$$

to the function, and Δ_k is the trust region bound.

- Predict an active set A_k.
- Compute a step s_k
- $x_{k+1} = x_k + s_k$ if $f(x_k + s_k) < f(x_k)$, otherwise $x_{k+1} = x_k$.
- \diamond Update Δ_k .

What codes are being developed?

Global Arrays

Overture

Parallel programs that use large distributed arrays

Support for Grids and meshes

> Language Interoperability

Infrastructure for distributed computing

On-line visualization and computational stearing

Coupling distributed applications

Performance analysis and monitoring

Chasm

Globus

Tool Interoperability Tool-to-Tool

Component Technology!

PSE's and Frameworks

PyACTS

More Tutorials

http://acts.nersc.gov/events/Workshop2004/

SIAM CSE05 Short Course + Workshop 2004 CD Request: acts-support@nersc.gov - It's FREE!

Coming Soon! ACTS Workshop 2005 August 23-26, 2005

